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1 Introduction

AlterBBN is a public C program for the calculation of the abundance of the elements
generated during Big-Bang nucleosynthesis (BBN), released under the GPL version
3 license. The first version was released in 2011 [1] and could be considered as a
spiritual successor of NUC123 [2]. Contrary to other public BBN codes such as the
Fortran program PArthENoPE [3, 4] or the Mathematica code PRIMAT [5], the main
purpose of AlterBBN is to compute the abundance of the elements in alternative
cosmological scenarios, in a fast and reliable way. AlterBBN is also included in the
SuperIso Relic package [6–8].

AlterBBN can be downloaded from its new website:

https://alterbbn.hepforge.org/

and involves an enlarged development team.
In AlterBBN v2, automatic calculation of errors and correlations has been imple-

mented using methods similar to the ones described in Refs. [9, 10]. To improve the
speed of the calculations, parallel processing is possible through the OpenMP library.
In addition, the units throughout the code have been unified to have GeV as the
main unit, in order to stay consistent with SuperIso Relic. The nuclear reaction
network has also been extended, and the code has been scrutinized and improved for
precision and speed.

Moreover, new cosmological scenarios have been implemented in AlterBBN, such
as reheating, decaying primordial scalar field, and simple WIMP scenarios.

The rest of this paper is organised as follows. Section 2 provides a review of BBN
physics and the cosmological modifications implemented in AlterBBN. Section 3 de-
scribes the content of the AlterBBN package. Section 4 gives usage instructions.
Section 5 describes the input and output of AlterBBN. Section 6 provides examples
of analyses which can be performed with AlterBBN. Short descriptions of the nu-
clear reaction network, integration methods and BBN constraints implemented in
AlterBBN are given in the appendices.

2 BBN physics and cosmology

In this section we briefly present the physics relevant for BBN studies. We consider
the system of natural units c = ~ = kB = 1.

2.1 Cosmological standard model and BBN

2.1.1 General equations

In the beginning of the BBN epoch, the universe contained photons γ, electrons,
e−, positrons, e+, protons p, neutrons n, neutrinos ν and antineutrinos ν̄, and pre-
sumably, dark matter χ. During this epoch, new nuclei formed via nuclear reactions
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(see Table A.1 in Appendix A), which may be classified under the general name of
baryons, b. BBN takes place in the radiation-dominated era of the early universe
expansion and depends on the expansion rate, ȧ, given by the Friedmann equation
as a function of the total density ρtot,

H2 =
(
ȧ

a

)2
= 8πG

3 ρtot , (2.1)

where H is the Hubble parameter and G is Newton’s gravitational constant. The
total density ρtot is given by the sum over the previously mentioned densities,

ρtot = ργ + ρν,ν̄ + ρb + ρe− + ρe+ + ρχ , (2.2)

where ρν,ν̄ is the energy density of neutrinos and antineutrinos. Each density is
governed by continuity equations,

d

dt
(ρseta

3) + Pset
d

dt
(a3)− T d

dt
(sseta

3) = 0 . (2.3)

In general, both ρset and sset are functions of both temperature, T , and scale factor,
a, or – since the scale factor is only time-dependent – as explicit functions of both
temperature T and time t. Using the fact that

d ln(a3)
dt

= 3H , (2.4)

the continuity equation can be expressed as a relation between the scale factor and
temperature,

d ln(a3)
dt

= −3H
∂ρset

∂T
− T ∂sset

∂T
∂ρset

∂t
+ 3H(ρset + Pset)− T

(
∂sset

∂t
+ 3Hsset

) . (2.5)

The cosmological components are generally considered to be ideal gases, with densi-
ties depending only on the temperature, and expansion is assumed to be adiabatic
so that d(sa3)/dt = 0 and ∂s/∂T = 0, this equation simplifies into

d ln(a3)
dt

= −3H
dρset

dT
ρset + Pset

. (2.6)

In the standard case of this equation, since dark matter and neutrinos can be con-
sidered decoupled, the densities ρset and pressures Pset are given by

ρset = ργ + ρb + ρe− + ρe+ , (2.7)

Pset = Pγ + Pb + Pe− + Pe+ . (2.8)
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For photons, these can be computed using statistical mechanics to give

ργ = π2

15T
4 , Pγ = 1

3ργ ,
(2.9)

and similarly, for neutrinos, to give

ρν,ν̄ = Nν
7
8
π2

15T
4
ν , Pν,ν̄ = 1

3ρν,ν̄ ,
(2.10)

where Nν is the number of Standard Model neutrino species, modified by the non-
exact relativistic behavior of e± using the value Nν = 3.046 [11]. The neutrino
temperature is related to the scale factor by

d ln(a3)
dTν

= −

dρν,ν̄
dTν

ρν,ν̄ + Pν,ν̄
− 1

3T
4N (T ) , (2.11)

where N (T ) is a function describing the incomplete neutrino decoupling given in
Eq. (A24) of [3],

N (T ) =


exp

[ 13∑
i=1

ni

(
me

T

)i]
if me/T < 4 ,

0 if me/T ≥ 4 ,
(2.12)

where ni = (−10.22, 61.24,−340.33, 1057.27,−2045.58, 2605.91,−2266.15, 1374.26,
−586.06, 174.87532902234145,−35.72, 4.75,−0.37, 0.013), as found in [12–14]. After
neutrino decoupling, the neutrino temperature is given by Tν/T = (4/11)1/3.

We parameterize the sums of the e± densities and pressures as

ρe− + ρe+ = 2
π2m

4
e

∞∑
n=1

(−1)n+1 cosh(nφe)M(nz) , (2.13)

and
Pe− + Pe+ = 2

π2m
4
e

∞∑
n=1

(−1)n+1

nz
cosh(nφe)L(nz) , (2.14)

where we have defined the dimensionless electron mass, z = me/T , and chemical
potential, φe− = −φe+ ≡ φe = µe/T , and where

L(z) = K2(z)
z

, and M(z) = 1
z

(3
4K3(z) + 1

4K1(z)
)
, (2.15)

are defined using modified Bessel functions Ki [15]. For faster computation, these
convergent sums are truncated at n = 7.

Another constraint equation comes from charge conservation. The difference
between the e± densities is linked to the nuclei abundances by

ne− − ne+ = hηT
3S

Mu
, (2.16)
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where
S =

∑
i

ZiYi , (2.17)

with Zi and Yi, the charge number and abundance of i-th nucleus respectively. hη
depends on the baryon-to-photon ratio, [2, 16, 17]

hη(T ) = Mu
nγ(T )
T 3 η(T ) , (2.18)

whereMu is the unit atomic mass and η is the baryon-to-photon ratio. The difference
in Eq. (2.16) can also be expressed as

ne− − ne+ = 2
π2m

3
e

∞∑
i=1

(−1)n+1 sinh(nφe)L(nz) . (2.19)

Using Eqs. (2.16) and (2.19), the electron chemical potential can be determined
using

dφe
dt

= ∂φe
∂T

dT

dt
+ ∂φe

∂a

da

dt
+ ∂φe
∂S

dS

dt
. (2.20)

Finally, the baryon density and pressure are given by the sums over the i-th
nuclei [16],

ρb = hηT
3
(

1 +
∑
i

(
∆Mi

Mu
+ ζT

)
Yi

)
, (2.21)

and
Pb = hηT

3
(

2
3ζT

∑
i

Yi

)
, (2.22)

where ∆Mi is the mass excess of i-th nucleus (see Table 1 in Appendix A) and
ζ = 3/2Mu. hη can be determined dynamically using hη ∼ ρb/T

3 ∼ 1/a3T 3, which
implies the logarithmic relation

d ln(hη)
dt

= −3
(
d ln(a)
dt

+ d ln(T )
dt

)
. (2.23)

2.1.2 Nuclear reactions

The set of nuclear reactions used in AlterBBN is given in Tables 2–4 in Appendix A.
Each one of them can be written under the generalized form (to take into account
reactions where three nuclei are involved [18]),

Ni
AiZi +Nj

AjZj +Nk
AkZk ↔ Nl

AlZl +Nm
AmZm +Nn

AnZn , (2.24)

where Ni is the number of nuclei, Zi, that enter into the reaction and Ai is their
atomic number (see Table 1 in Appendix A). Then the abundance evolution of any
nuclei i is given by

dYi
dt

= Ni

∑
j,k,l,m,n

−Y Ni
i Y

Nj
j Y Nk

k

Ni!Nj!Nk!
Γijk→lmn + Y Nl

l Y Nm
m Y Nn

n

Nl!Nm!Nn! Γlmn→ijk

 , (2.25)

where Γijk→lmn and Γlmn→ijk are the forward and reverse reaction rates respectively.
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2.1.3 Initial conditions

The dynamical variables h(t), φe(t) and Yi(t), are all functions of time, or equiva-
lently, of temperature. The initial temperature is denoted by Ti. The initial condition
for hη depends on the initial value of the baryon-to-photon ratio, ηi, which is obtained
from entropy conservation

hη(Ti) = Mu
nγ(Ti)
T 3

i
η0

(
1 + se±(Ti)

sγ(Ti)

)
, (2.26)

where η0 is the CMB baryon-to-photon ratio. For any species, the entropy density is

ssp = ρsp + Psp

Tsp
. (2.27)

The initial condition for φe is

φe(Ti) ≈
π2

2
hη(Ti)Yp

Muz3
i

1
∞∑
n=1

(−1)n+1nL(nzi)
, (2.28)

where Yp is the initial proton abundance and zi is the initial dimensionless elec-
tron mass. The initial proton and neutron abundances Yp and Yn are given by the
equilibrium of the reaction p ↔ n

Yp(Ti) = 1
1 + e−q/Ti

, Yn(Ti) = 1
1 + eq/Ti

, (2.29)

where q = mn −mp is the nucleon mass difference. A similar equilibrium equation
is applied to find the (small) initial deuterium abundance [17]. All the other nucleus
abundances are 0 because they have not started to form yet. The initial time can be
found from the initial temperature through an “infinite temperature” approximation
[17]

ti =
√

12πGσ
T 2

i
, (2.30)

where σ = π2/60 is the Stefan-Boltzmann constant.
The set of Eqs. (2.1), (2.3), (2.20), (2.23) and (2.25) will be solved by different

integration methods, as described in Appendix B.

2.2 Modified cosmologies

In this section, we present the several modified scenarios, compared to the standard
cosmology BBN, that are implemented in the AlterBBN program.
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2.2.1 Modified expansion rate

The addition of any new energy component in the early universe, such as equivalent
neutrinos or any kind of effective “dark density”, has an impact on the Friedmann
equation (2.1). Indeed, the total density ρtot from previous section receives a “dark”
contribution ρD

ρtot → ρtot + ρD , (2.31)

H2 = 8πG
3 (ρtot + ρD) . (2.32)

This modification affects the computation of the Hubble parameter, as shown by Eq.
(2.32). For the case of a “dark density”, we have [19]

ρD(T ) = κρ ργ(T0)
(
T

T0

)nρ
, (2.33)

where T0 = 1 MeV is chosen as a typical energy scale to fit the BBN initial conditions.
Thus, κρ is the ratio of the dark density to the photon density at this energy scale.
nρ is the decrease exponent of this dark density (4 for radiation, 3 for matter, etc.).
A temperature cut can be added below which this density is strictly 0. If the dark
fluid is in interaction with the plasma, it can enter the set of interacting components
of Eq. (2.6), otherwise it only affects the expansion rate.

The pressure PD associated to ρD is calculated automatically from a combination
of the conservation equation and the entropy density evolution

PD = s
dT

ds

(
dρD

dT
− ρD

ds

dT

)
, (2.34)

where s is the entropy density. The total radiation entropy, srad, is parameterized
through the effective relativistic entropy degrees of freedom heff ,

srad(T ) = heff(T )2π2

45 T
3 . (2.35)

The heff(T ) are tabulated in the directory sgStar_heff.
Another consequence of this modification is the computation of the initial time

in the AlterBBN program, as one can see from Eq. (2.30). As long as the density is
larger at a given time, the Hubble parameter is larger, and thus the time is smaller.
For a fixed temperature, a correction has to be applied to the initial time ti following

ti,D = HSBBN

HD
ti , (2.36)

where HSBBN is the standard Hubble rate given in Eq. (2.1) and HD the modified
one given by Eq. (2.32).
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2.2.2 Additional neutrino species

The AlterBBN program leaves the possibility to modify the number of Standard
Model neutrino species through the value of Nν (see Eq. (2.10)). It is possible to
add equivalent neutrinos to this number through a contribution ∆Nν , and we have
Ntot = Nν + ∆Nν .

In addition, there could be a neutrino degeneracy between the 3 neutrino species
of the Standard Model, which leads to non-zero dimensionless chemical potentials
ξν1 , ξν2 and ξν3 , which are not necessarily equal. This will have two consequences.

The first one is a modification of Eq. (2.10) for the computation of the neutrino
density. The exact statistical mechanics formula is, for each species i = 1, 2, 3

ρνi,νi = 1
2π2T

4
ν

∫ +∞

0
dx

x3

1 + exp(x∓ ξνi)
, (2.37)

which for small degeneracies (ξνi < 0.3) is approximated by the expansion [2]

ρνi + ρν̄i ≈
π2

15T
4
ν

(7
8 + 15

4π2 ξ
2
νi

+ 15
8π4 ξ

4
νi

+O(ξ4
νi

)
)
, (2.38)

and for high degeneracies (ξνi > 30) by the expansion [2]

ρνi + ρν̄i ≈
1

8π2 (Tνξνi)4
(

1 + 2π2

ξ2
νi

+O
(

1
ξ2
νi

))
. (2.39)

For intermediate degeneracies (0.3 < ξνi < 30), Eq. (2.37) has to be integrated
numerically.

The second consequence is a modification of the weak interaction equilibrium
in the reaction p ↔ n. The initial abundances of protons and neutrons, given in
Eq. (2.29), become

Yp(Ti) = 1
1 + e−q/Ti−ξν̄e

, Yn(Ti) = 1
1 + eq/Ti+ξν̄e

. (2.40)

2.2.3 Modification of the entropy content

The early universe content can also be modified by adding entropy components,
driven by particle annihilation, or simply any kind of “dark entropy” density. The
relation between the scale factor and temperature is then given by Eq. (2.5), where
s is the total entropy density, composed of radiation and dark entropies, denoted by
srad and sD. Two different cases can occur (simultaneously or separately):

1 – Dark entropy: the “dark entropy” sD is a function of the temperature T , but
is not linked to any reheating process of radiation, so that the term ∂sD/∂t vanishes
in Eq. (2.5). Two different derivations are possible. We can first express it as [20]

sD = κssγ(T0)
(
T

T0

)ns
, (2.41)
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where the dark entropy to photon entropy ratio, κs, is taken at the energy scale
T0 = 1 MeV, and ns is the decay exponent of this component. A temperature cut
below which this density vanishes can be added.

A second derivation of the “dark entropy” is possible by injecting additional
entropy ΣD [21]

ΣD(T ) = κΣΣeff
rad(T0)

(
T

T0

)nΣ

, (2.42)

where κΣ is the ratio of the dark entropy injection to the radiation entropy density

time-derivative, Σeff
rad(T ) ≡

∣∣∣∣∣dsrad

dt

∣∣∣∣∣ = 3Hsrad at T0 = 1 MeV, and nΣ is the decay

exponent of this production. The associated “dark entropy” density is thus the
integral

sD(T ) = 3
√

5
4π3G

heff(T )T 3
∫ T

0
dT ′

√
g∗(T )ΣD(T ′)

h2
eff(T ′)T ′ 6

√
1 + ρD(T )/ρrad(T )

, (2.43)

where the values of heff(T ) and geff(T ) are tabulated in sgStar_heff.

2 – Reheating: the radiation entropy srad can receive contributions from a radia-
tion entropy injection Σrad at constant temperature, such that ∂s/∂T = 0 and

dsrad

dt
= −3Hsrad + Σrad , (2.44)

which will modify the relation between the temperature and the time according to
Eq. (2.5), and result in a “reheating” of the primordial plasma and a local increase
of the radiation entropy density. Here, we use

Σrad(T ) = κΣrΣeff
rad(T0)

(
T

T0

)nΣr

, (2.45)

where κΣr is the ratio of the radiation entropy injection to the radiation entropy

density time-derivative Σeff
rad(T ) ≡

∣∣∣∣∣dsrad

dt

∣∣∣∣∣ = 3Hsrad at T0 = 1 MeV and nΣr is the

decay exponent of this production.

2.2.4 Decaying scalar field

In this scenario, a primordial scalar field is decaying, as described in [22]. Its density
ρφ follows the Boltzmann equation

dρφ
dt

= −nHρφ − Γφρφ , (2.46)

where Γφ is the decay width of the scalar field and n the decay exponent of the
scalar field density in term of the expansion factor. The scalar field decay results in
radiation entropy injection at constant temperature such that ∂s/∂T = 0 and

∂srad

∂t
= −3Hsrad + Γφρφ

T
. (2.47)
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The decay width can be related to the reheating temperature TRH through [23]

Γφ =
√

4π3geff(TRH)
45

T 2
RH
MP

, (2.48)

where geff is the effective relativistic energy degrees of freedom tabulated in sgStar_heff,
and MP is the Planck mass.

This scenario requires two input parameters, the first one being ρ̃φ the scalar field
energy density proportion to the photon energy density at the initial temperature
(∼ 2.3 MeV) and the second one the reheating temperature TRH.

2.2.5 WIMP scenarios

Several simple WIMP scenarios have been implemented in AlterBBN [18]. WIMPs
are a possible solution to the dark matter problem in cosmology. WIMPs are light,
weakly interacting new particles characterized by their mass, mχ, their type (Majo-
rana or Dirac fermion, real or complex scalar), and their coupling to Standard Model
particles (neutrinos and possibly equivalents, or electromagnetic interactions).

Many of the features and calculations needed for WIMPs in AlterBBN are sim-
ilar to those mentioned before. We must add a new WIMP density and pressure
interacting with the plasma through self-annihilations. WIMPs are considered to
be completely decoupled from the plasma and to be non-relativistic at the time of
BBN.6 The WIMP density and pressure are given similarly to Eqs. (2.13) and (2.14)
by [15]

ρχ = gχm
4
χ

∞∑
n=1

(−1)β(n+1) cosh(nφχ)M(nzχ) , (2.49)

and
Pχ = gχm

4
χ

∞∑
n=1

(−1)β(n+1)

nzχ
cosh(nφχ)L(nzχ) , (2.50)

where gχ is the internal number of degrees of freedom of the WIMPs (1 for a real
scalar, 2 for a complex scalar, 2 for a Majorana fermion, 4 for a Dirac fermion), zχ =
mχ/Tχ is their dimensionless mass, and φχ = µχ/Tχ their dimensionless chemical
potential. The WIMP temperature Tχ can be T or Tν , depending on the couplings of
the WIMPs to Standard Model particles (electromagnetic or neutrinos, respectively).
Also, β = 0 for bosonic WIMPs and β = 1 for fermionic WIMPs. Finally, the “cosh”
function has to be replaced by an “exp” function in the case of self-conjugate particles
(real scalars and Majorana fermions).

WIMPs also contribute to the entropy density of the early universe and thus the
initial condition for the hη(Ti) variable from Eq. (2.26) has to be modified to

hη(Ti) = Mu
nγ(Ti)
T 3

i
η0

(
1 + se±(Ti) + sχ(Ti)

sγ(Ti)

)
. (2.51)

6More sophisticated models such as those described in [24–26] will be implemented in future
versions of AlterBBN.
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Finally, if WIMPs are coupled to neutrinos, they may dynamically modify the
neutrino temperature. For details on the way these modifications alter the differential
equations of BBN, we refer the reader to Section 3.2 of Ref. [18].

3 Content of the AlterBBN package

The folder alterbbn_v2.X/ contains the nine main programs of AlterBBN:

• stand_cosmo.c,

• alter_eta.c,

• alter_neutrinos.c,

• alter_neutron.c,

• alter_etannutau.c,

• alter_standmod.c,

• alter_reheating.c,

• alter_phi.c,

• alter_wimps.c,

together with a README file, a Makefile file and a folder alterbbn_v2.X/src/. The
folder alterbbn_v2.X/src/ contains the source files:

• bbn.c,

• bbnrate.c,

• bbn_constraints.c,

• general.c,

• cosmodel.c,

together with the files include.h, numbers.h, bbn.h, bbnrate.h – containing the
headers of all the program routines – and Makefile. There is also a folder sgStar_heff/
containing numerically computed tables for heff(T ) and geff(T ), mentioned in Sec-
tions 2.2.1 and 2.2.3, and a folder contrib/newreac/ which contains routines to
include reactions and isotopes from the REACLIB database [27] into AlterBBN, as
explained in Section 3.4.
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3.1 Parameter structure

There are two main data structures in the program AlterBBN, defined in the file
include.h. The first one is:

typedef struct relicparam
/* structure containing the cosmological model parameters */
{

int entropy_model,energy_model;
double dd0,ndd,Tdend,Tddeq; // dark density
double sd0,nsd,Tsend; // dark entropy
double Sigmad0,nSigmad,TSigmadend; // dark entropy injection
double Sigmarad0,nSigmarad,TSigmaradend; // standard entropy injection
double nt0,nnt,Tnend; // non-thermal production of relics
int coupd; // dark fluid coupling to plasma

double quintn2,quintn3,quintn4,quintT12,quintT23,quintT34;
// effective quintessence model

int phi_model; // decaying scalar field model switch
double eta_phi,Gamma_phi,rhot_phi_Tmax,n_phi; // eta_phi = b / m_phi
double rhot_phi0,Tphi0;
double T_RH;
double Sigmatildestar;
double Sigmatildestar_max;
double Tstdstar_max;

double mgravitino; // gravitino mass

double relicmass;
int scalar;

int solver; // switch for linear or logarithmic differential equation solver
int beta_samples;

double Tfo,Tmax; // Freeze out and maximal temperature

int full_comput; // Switch to deactivate the fast freeze out temperature
determination

double table_eff[276][3]; // Reads values from the SgStar files

14



int use_table_rhoPD;
double table_rhoPD[2][NTABMAX];
int size_table_rhoPD;

/*---------------------*/
/* AlterBBN parameters */
/*---------------------*/

int err;
int failsafe; // Switch for the integration method
double eta0; // Initial Baryon to photon ratio
double Nnu; // Number of Neutrinos (e+- included)
double dNnu; // Number of extra neutrinos (delta N_nu)
double life_neutron,life_neutron_error; // neutron lifetime
double xinu1,xinu2,xinu3; // [e-,neutrino], [muon,neutrino],
[tau,neutrino] respectively (degeneracy parameters)
double m_chi; // Mass of WIMP
double g_chi; // dof of WIMP
double Tinit; // Initial temperature
double Tnudec; // Neutrino decoupling temperature
int wimp; // Switch to enable (1) / disable (0) wimps
int SMC_wimp; // wimp coupling to SM particles. 1 for EM,
2 for neutrino, 3 for neut. and eq. neut.
int selfConjugate; // 1/0 for self-conjugate/non-self-conjugate WIMP
int fermion;
int EM_coupled, neut_coupled, neuteq_coupled;
double fierz; // Fierz interference term from LQ sector
double B_chi; // branching ratio of WIMP DM of mass m_p < m_chi < m_n
to explain the tau_n anomaly
double rhob0; // current baryon density
double b_cdm_ratio; // current ratio of baryon density to cold dark
matter density
int constraints; // 1=Yp, 2=+H2/H, 3=+Li7/H, 4=+He3/H

}
relicparam;

and it contains all the parameters necessary to compute the BBN abundances of the
elements, both in standard cosmology, and in alternative cosmologies. This structure
parallels the one in SuperIso Relic [6–8] and so some of its parameters are not used
in AlterBBN.

The second data structure is:
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typedef struct errorparam
{

int failsafe;
int errnumber;
double random[];
double life_neutron;

}
errorparam;

and it contains parameters needed to give estimated errors linked to the computed
abundances.

AlterBBN has different modes to compute the abundance of the elements, de-
termined by the failsafe variable of the relicparam structure: 0 corresponds to
a fast but less precise calculation, and positive values to more precise but slower
calculations. In case of a very non-standard cosmological scenario, it is advisable to
set failsafe to 6 or more. By default, the standard mode is set to 1. A description
of the different modes is provided in Section B, together with the computation times
and precisions in Section C.

3.2 Main routines

The main routines compiled into the library libbbn.a are:

• void Init_cosmomodel(struct relicparam* paramrelic)

This routine defined in cosmodel.c initializes the paramrelic structure with
standard BBN values. It sets the number of neutrino species to Nnu = 3.046
(including effects from non exactly relativistic e± [11]), the baryon-to-photon
ratio to eta0 = 6.10×10−10 [28], the initial temperature to Tinit = 27×109 K
(corresponding to 2.3MeV, an adequate value before the real start of BBN) and
the lifetime of the neutron life_neutron = 880.2 s [28] (with its associated
error to life_time_error = 1.0 s). All the other parameters are set to 0.

• void Init_cosmomodel_param(double eta, double Nnu,
double dNnu, double life_neutron, double
life_neutron_error, double xinu1, double xinu2, double
xinu3, struct relicparam* paramrelic)

This routine defined in cosmodel.c specifies some parameters of the paramrelic
structure with potentially non-standard values: the baryon-to-photon ratio
eta0, the number of Standard Model neutrino species Nnu, the number of ad-
ditional neutrino species dNnu, degeneracy of the Standard Model neutrinos
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xinu1, xinu2 and xinu3 (see Section 2.2.2) and finally, the neutron lifetime
life_neutron and the associated error life_neutron_error.

• void Init_dark_density(double dd0, double ndd, double
T_end, struct relicparam* paramrelic)

This routine defined in cosmodel.c specifies the parameters of the paramrelic
structure related to the effective dark density described in Section 2.2.1. Here
κρ = dd0, nρ = ndd and T_end is the temperature cutoff at which the effective
dark density is set to 0.

• void Init_dark_entropy(double sd0, double nsd, double
T_end, struct relicparam* paramrelic)

This routine defined in cosmodel.c specifies the parameters of the paramrelic
structure related to the effective dark entropy density, in the case of no reheat-
ing, as described in Section 2.2.3. Here, κs = sd0, ns = nsd, and T_end is the
temperature cutoff at which the effective dark entropy is set to zero.

• void Init_dark_entropySigmaD(double Sigmad0, double
nSigmad, double T_end, struct relicparam* paramrelic)

This routine defined in cosmodel.c specifies the parameters of the paramrelic
structure related to the effective dark entropy production in the no-reheating
case described in Section 2.2.3. Here, κΣ = Sigmad0, nΣ = nSigmad, and
T_end is the temperature cutoff at which the effective entropy production is
set to zero.

• void Init_entropySigmarad(double Sigmarad0, double
nSigmarad, double T_end, struct relicparam* paramrelic)

This routine defined in cosmodel.c specifies the parameters of the paramrelic
structure related to the radiation entropy production in the reheating case, de-
scribed in Section 2.2.3. Here κΣr = Sigmarad0, nΣr = nSigmarad and T_end
is the cutoff temperature at which the radiation entropy production is set to 0.

• void Init_scalarfield(double rhotilde_phi, double T_RH,
double eta_phi, double n_phi, struct relicparam* paramrelic)

This routine defined in cosmodel.c specifies the parameters of the paramrelic
structure related to the decay of a scalar field during BBN, as described in Sec-
tion 2.2.4. Here, rhotilde_phi is the ratio of the scalar field density over the
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photon density at initial temperature, T_RH is the reheating temperature, and
n_phi is the decay exponent of the scalar field density. The parameter eta_phi
has no effect in AlterBBN and is set to zero.

• void Init_wimp(double mass_wimp, int EM_coupled, int
neut_coupled, int neuteq_coupled, int fermion, int
selfConjugate, double g_chi, struct relicparam* paramrelic)

This routine defined in cosmodel.c specifies the parameters of the paramrelic
structure related to the existence of WIMPs during BBN, as described in Sec-
tion 2.2.5. Here, the parameters related to WIMP injection are the WIMP
mass,mχ = mass_wimp, the Standard Model couplings, EM_coupled, neut_coupled,
and neuteq_coupled (all switches between 0/1 for inactive/active), and the
type of WIMP particle, fermion and selfConjugate (both switches between
0/1 which represent the four types of wimps described in paragraph 2.2.5).

• void rate_weak(double f[], struct relicparam* paramrelic,
struct errorparam* paramerror)

This routine defined in bbnrate.c computes the forward reaction rates of the
β-decays corresponding to the processes (2–11) given in Table 2 in Appendix A
and stores them into slots (2–11) of the array f[]. There is no reverse reaction
so slots (2–11) of the array r[] do not need to be computed.

• void rate_pn(double f[], double r[], double T9, double Tnu, struct
relicparam* paramrelic, struct errorparam* paramerror)

This routine defined in bbnrate.c computes the forward and reverse reac-
tion rates of the nuclear reaction 1 (proton-neutron conversion) given in Table
2 in Appendix A and stores them into the slot (1) of the arrays f[] and r[].

• void rate_all(double f[], double T9, struct relicparam*
paramrelic, struct errorparam* paramerror)

This routine defined in bbnrate.c computes the forward reaction rates of
the nuclear reactions (12-100) given in Tables 2 and 3 in Appendix A and
stores them into slots (12-100) of array f[] (the reverse reaction rates will
be estimated elsewhere using detailed balance factors contained in the table
reacparam[][] and stored in the array r[]).

• int nucl(struct relicparam* paramrelic, double ratioH[])
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This routine defined in bbn.c is the main routine of the program, as it com-
putes the BBN abundance ratios of all nuclei given in Table 1 in Appendix A
and in particular, the light elements Yp = ρ(4He)/ρb, H2_H = [2H]/[H], He3_H
= [3He]/[H], Li7_H = [7Li]/[H], Li6_H = [6Li]/[H] and Be7_H = [7Be]/[H] (note
that He3_H and Li7_H contain the contributions of post-BBN decays of re-
spectively H3_H and Be7_H). It returns 0 if the computation succeeded or 1
otherwise.

• int bbn_excluded(struct relicparam* paramrelic)

This routine defined in bbn_constraints.c is a “container” function that calls
the nucl routine and compares its results with BBN observational constraints
summarized in Appendix D. It returns 0 if the constraints are satisfied, 1 if the
abundances are not compatible with the observations and −1 if the computa-
tion fails.

3.3 Error & correlations

AlterBBN includes BBN nuclei abundance calculation error estimates. These es-
timates rely on the parameters err and life_neutron_error contained in the
relicparam structure, and the parameters errnumber and random[] in the errorparam
structure (see Section 3.1), as well as estimated errors on the nuclear reaction rates.

The err parameter switches between five methods of evaluation of the abun-
dances of the elements and their errors:

• err = 0: central values of the nuclear reaction rates are used for all reactions,

• err = 1: higher values are used for all reactions,

• err = 2: lower values are used for all reactions,

• err = 3: the covariance matrix is calculated through the variation of the pa-
rameters, using the higher value of the reaction rates and following the method
of Ref. [10],

• err = 4: randomly Gaussian distributed values (between lower and higher) are
used for all reactions.

The nine main programs listed in the next section run successively the err = 2,
err = 0 and err = 1 types in order to give associated “lower", central and “upper”
values of the abundances. Then they run the err = 3 type for all the reactions in
order to compute a correlation matrix between the abundances, stored in the table
corr_ratioH[][].

An additional run of the err = 4 type is implemented to perform a Monte Carlo
correlation analysis, but it is commented out due to the extensive computational
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time (the abundance computation has to be done a lot of times, a number defined
by the variable niter = 1000, by default).

The err = 0 type is used in order to compare the computed abundances to the
most recent observations using a χ2 analysis (chi2 without correlations). The
err = 3 type is used to compute the correlations and obtain a χ2 (chi2 including
correlations).

3.4 REACLIB reactions

By default, AlterBBN incorporates 26 elements and 100 nuclear reactions. A new
module has been added in the latest version to easily include more elements and
reactions from the JINA REACLIB database [27]. The routines are contained in the
directory src/contrib/newreac/. To generate a new set of isotopes and reactions,
the program has to be compiled with make, which creates create_network.x, and
run with three parameters and an optional one: name of the WINVN file, name
of the REACLIB database file, maximal atomic mass to be kept, and the optional
parameter can be 0, 1 or 2, which selects all the isotopes with an atomic mass smaller
than the maximal value, removes the isotopes with very small abundances after
BBN, or removes the isotopes with very small abundances during BBN, respectively.
The program generates three files, numbers.h, bbn.h and bbnrate.h, which contain
the REACLIB parameters and are symbolically linked into src/. In the packages,
the latest WINVN and READLIB files from http://reaclib.jinaweb.org/ are
included. Running
./create_network.x winvn_v2.0.dat results02200820.dat 30 1
adds 19 elements and 101 nuclear reactions. This set of new reactions is included by
default in AlterBBN, but can be easily modified by running create_network.x.

4 Compilation and installation instructions

AlterBBN has been written in C respecting the C99 standard, and it has been tested
with the GNU C and the Intel C compilers on Linux, Windows (using Cygwin64)
and Mac. The package can be downloaded at the address:

https://alterbbn.hepforge.org/

The package should be unpacked in the desired directory, creating the main directory

alterbbn_vX.X/

containing the material described in Section 3. If needed, the user’s C compiler
information and flags can be specified in the file Makefile in this main directory. In
particular, some of the computations are made in parallel using the OpenMP library.
The user should comment out the corresponding lines if this library is not installed.
More information is provided in the README file.
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To activate the extra REACLIB reactions in AlterBBN (see Section 3.4), the line
#define REACLIB has to be uncommented in include.h. If the number of extra
elements is large, segmentation faults can occur because of the limited stack size.
To circumvent the problem, it can be necessary to run ulimit -s unlimited before
running the code.

To compile the library libbbn.a, type make in the main folder. The library
file will be created in the subfolder src/. To compile a specific program, type make
<name> or make <name>.c in the main folder, where <name> can be:

• stand_cosmo (see Section 5.1),

• alter_eta (see Section 5.2.1),

• alter_neutrinos (see Section 5.2.3),

• alter_etannutau (see Section 5.2.2),

• alter_standmod (see Section 5.3),

• alter_reheating (see Section 5.4),

• alter_phi (see Section 5.5),

• alter_wimps (see Section 5.6).

• alter_neutron (see Section 5.7).

5 Input and output description

In this section we give input and output instructions for the nine programs listed in
Section 4.

5.1 Standard cosmology

The program stand_cosmo.x computes the BBN abundances of the nuclei as well
as the associated errors and correlation matrix in the standard cosmological model.
It takes one integer as argument; if it is 0, a fast calculation is performed, larger
values provide slower, but more precise, calculations. Descriptions of the possible
integration methods are given in Sections B and C. The values of the baryon-to-
photon ratio, the neutron lifetime and the number of neutrinos species are set by the
Init_cosmomodel routine. Running the program with:
./stand_cosmo.x 3
returns:
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Yp H2/H He3/H Li7/H Li6/H Be7/H
low: 2.474e-01 2.526e-05 1.025e-05 5.028e-10 1.689e-15 4.745e-10
cent: 2.473e-01 2.463e-05 1.034e-05 5.376e-10 1.085e-14 5.087e-10
high: 2.473e-01 2.404e-05 1.044e-05 5.746e-10 3.522e-14 5.454e-10

––––––––––
With uncertainties:

Yp H2/H He3/H Li7/H Li6/H Be7/H
value: 2.473e-01 2.463e-05 1.034e-05 5.376e-10 1.085e-14 5.087e-10
+/- : 3.201e-04 3.769e-07 1.644e-07 3.517e-11 1.085e-14 3.427e-11

Correlation matrix:
Yp H2/H He3/H Li7/H Li6/H Be7/H

Yp 1.000000 -0.011847 0.008393 0.032030 0.001444 0.031116
H2/H -0.011847 1.000000 -0.765797 -0.356718 0.060103 -0.369486
He3/H 0.008393 -0.765797 1.000000 0.357189 -0.006905 0.368957
Li7/H 0.032030 -0.356718 0.357189 1.000000 -0.024687 0.996535
Li6/H 0.001444 0.060103 -0.006905 -0.024687 1.000000 -0.025486
Be7/H 0.031116 -0.369486 0.368957 0.996535 -0.025486 1.000000

Compatible with BBN constraints (chi2 without correlations)
Compatible with BBN constraints (chi2 including correlations)

5.2 Standard cosmology with modified parameters

5.2.1 Modification of the baryon-to-photon ratio

The program alter_eta.x computes the BBN abundances, errors and correlations in
the standard cosmological model, but with a modified value of the baryon-to-photon
ratio, η0, taken as an input argument. The next argument is optional and specifies
the integration method. Running the program with:
./alter_eta.x 3e-10
returns (hereafter, only the most relevant part of the output will be given):

Yp H2/H He3/H Li7/H Li6/H Be7/H
value: 2.397e-01 7.545e-05 1.618e-05 1.318e-10 3.165e-14 6.869e-11
+/- : 3.195e-04 1.289e-06 1.726e-07 1.100e-11 3.134e-14 5.272e-12

Excluded by BBN constraints (chi2 without correlations)
Excluded by BBN constraints (chi2 including correlations)

5.2.2 Modifications of the baryon-to-photon ratio, neutrino number and
neutron lifetime

The program alter_etannutau.x computes the BBN abundances, errors and corre-
lations in the standard cosmological model, but with a modified value of the baryon-
to-photon ratio, number of Standard Model neutrino species, number of additional
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neutrino species, neutron lifetime, the optional integration method choice and an op-
tional neutron lifetime error given in seconds, taken as input arguments in respective
order. Running the program with:
./alter_etannutau.x 6.09e-10 3.05 0.1 880.5 32 2.
returns:

Yp H2/H He3/H Li7/H Li6/H Be7/H
value: 2.488e-01 2.512e-05 1.041e-05 5.282e-10 1.115e-14 4.987e-10
+/- : 6.459e-03 5.415e-07 1.724e-07 3.549e-11 1.115e-14 3.430e-11

Compatible with BBN constraints (chi2 without correlations)
Compatible with BBN constraints (chi2 including correlations)

5.2.3 Modifications of the neutrino number and degeneracies

The program alter_neutrinos.x computes the BBN abundances, errors and corre-
lations in the standard cosmological model, but with a modified number of Standard
Model neutrino species, number of additional neutrino species and possibly three neu-
trino degeneracies ξνi (see Section 2.2.2) as well as the optional integration method
choice, taken as input arguments in respective order. Running the program with:
./alter_neutrinos.x 3.046 0.1 0.1 0.1 0.1
returns:

Yp H2/H He3/H Li7/H Li6/H Be7/H
value: 2.255e-01 2.354e-05 1.019e-05 5.046e-10 9.207e-15 4.799e-10
+/- : 2.965e-04 4.256e-07 1.678e-07 3.268e-11 9.181e-15 3.180e-11

Compatible with BBN constraints (chi2 without correlations)
Excluded by BBN constraints (chi2 including correlations)

5.3 Modified expansion rate and entropy content

The program alter_standmod.x computes the BBN abundances, errors and corre-
lations in a cosmology scenario without reheating where the expansion rate and the
entropy content are modified by the injection of a dark component throughout the
BBN epoch (see Section 2.2.3). It takes 4–8 ordered arguments, κρ, nρ, κs and ns,
and an optional switch to specify if the dark energy is coupled to the plasma (if
set to 1, the dark energy enters the set in Eq. (2.6), otherwise it only modifies the
expansion rate), the cutoff temperatures in MeV for dark energy and dark entropy,
and the integration method. Running the program with:
./alter_standmod.x 0.1 3 0.1 4 0 0. 0.
returns:

Yp H2/H He3/H Li7/H Li6/H Be7/H
value: 2.652e-01 4.249e-05 1.197e-05 3.244e-10 2.007e-14 2.754e-10
+/- : 3.243e-04 1.343e-06 1.978e-07 2.380e-11 1.996e-14 2.305e-11
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Excluded by BBN constraints (chi2 without correlations)
Excluded by BBN constraints (chi2 including correlations)

5.4 Effective reheating scenario

The program alter_reheating.x computes the BBN abundances, errors and cor-
relations in a cosmology scenario with reheating where dark energy and entropy are
injected throughout the BBN epoch. It takes 5–10 ordered arguments, κρ, nρ, κΣr ,
nΣr , the temperature cutoff for the injection in MeV and optionally, κs, ns, κΣ and
nΣ (see Section 2.2.3), the integration method, and the initial value of η. Running
the program with:
./alter_reheating 0 0 1 6 0.01
returns:

Yp H2/H He3/H Li7/H Li6/H Be7/H
value: 1.603e-01 3.469e-04 3.224e-05 2.222e-10 9.056e-14 1.662e-12
+/- : 2.730e-04 4.347e-06 2.825e-07 4.125e-11 8.706e-14 1.157e-13

Excluded by BBN constraints (chi2 without correlations)
Excluded by BBN constraints (chi2 including correlations)

5.5 Decaying scalar field scenario

The program alter_phi.x computes the BBN abundances, errors and correlations
in a cosmological scenario where a scalar field is decaying throughout the BBN epoch.
It takes two arguments, the scalar field density ratio ρ̃φ, and the reheating tempera-
ture, TRH, in MeV (see Section 2.2.4), and three more optional arguments, the scalar
field decay exponent (3 by default, matter-like behaviour), the initial temperature in
MeV, the integration method, and the initial value of η. Running the program with:
./alter_phi.x 0.1 10
returns:

Yp H2/H He3/H Li7/H Li6/H Be7/H
value: 2.454e-01 2.532e-05 1.040e-05 5.156e-10 1.104e-14 4.865e-10
+/- : 3.202e-04 1.040e-06 1.894e-07 4.650e-11 1.093e-14 4.596e-11

Compatible with BBN constraints (chi2 without correlations)
Compatible with BBN constraints (chi2 including correlations)

5.6 WIMP scenario

The program alter_wimps.x computes the BBN abundances, errors and correlations
in a cosmological scenario where WIMPs are added to the Standard Model particles.
It takes three arguments, which are the type of WIMP particle (1: real scalar, 2:
complex scalar, 3: Majorana fermion, 4: Dirac fermion), the type of coupling to the
Standard Model particles (1: neutrinos, 2: electromagnatic, 3: equivalent neutrinos)
and mχ (to be given in MeV) (see Section 2.2.5). An additional parameter can be
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given to specify the integration method. Running the program with:
./alter_wimp.x 2 2 15.
returns:

Yp H2/H He3/H Li7/H Li6/H Be7/H
value: 2.473e-01 2.421e-05 1.028e-05 5.496e-10 1.067e-14 5.212e-10
+/- : 3.183e-04 5.985e-07 1.712e-07 3.839e-11 1.065e-14 3.800e-11

Compatible with BBN constraints (chi2 without correlations)
Compatible with BBN constraints (chi2 including correlations)

5.7 Neutron decay scenarios

The program alter_neutron.x computes the BBN abundances, errors and correla-
tions in a cosmological scenario where neutron beta decay is modified by beyond the
Standard Model physics such as tensor or scalar currents, or dark decay channels
with WIMPs near the neutron mass.

The reaction rates require phase space integrals with fermion state occupancy
terms 1/(1 + e±x/z), the electron occupancy factor, where x = Ee/me is the reduced
electron energy, and z = T9kB/me is the dimensionless reduced final-state tempera-
ture, and 1/(1 + e±xν/zν±ξνe ), the neutrino occupancy factor, where xν = q− x is the
reduced neutrino energy, and zν = TνkB/me is the dimensionless reduced neutrino
temperature, with q = (mn − mp)/me ≈ 2.53101, the dimensionless neutron end-
point. alter_neutron.x increases the precision of the phase-space by adding the
Fermi function that corrects for the electrostatic interaction of protons and betas,

F (±η) = ±η
1± e±η ; η = 2πα/β. (5.1)

It also allows for the careful calculation of scenarios with an added scalar or ten-
sor interaction with the Fierz interference parameter for the free neutron, bn, with
the variable fierz, and a electron neutrino chemical potential ξνe using xinu1, as
discussed in Section 2.2.1.

The first of the four integrals calculated is just the standard neutron decay
familiar from low energy, but with and added Fierz term,

Γn→peν̄ = Γ̃0

∫ ∞
1

F (η)f(−x/z)f(−xν/zν − ξνe)βx2
νx(x+ bn) dx, (5.2)

where f(x) = 1/(1 + ex) and Γ̃0 is the phase space integral modified neutron decay
rate at low temperature,

(τnΓ̃0)−1 =
∫ q

1
F (η)βx2

νx(x+ bn) dx ≈ 1.69174 + 1.10855 bn, (5.3)

We then have the rates for the absorption of a positron or an electron neutrino

Γnē→pν = Γ̃0

∫ ∞
1

f(x/z)f(−xν/zν − ξνe)βx2
νx(x− bn) dx, (5.4)
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and
Γnν→pe = Γ̃0

∫ ∞
1

F (−η)f(−x/z)f(xν/zν + ξνe)βx2
νx(x− bn) dx, (5.5)

where xν = x+ q. We also have the reverse reaction p+ e− → n+ ν which is [29]

Γpe→nν = Γ̃0

∫ ∞
1

F (η)f(x/z)f(xν/zν + ξνe)βx2
νx(x+ bn) dx, (5.6)

where again as for the decay case, here xν = q−x. When alter_neutron.x computes
these integrals, it performs a numerical sum using the number of samples specified by
the beta_samples variable. Hundreds to thousands of samples are needed to probe
alterations to beta decay parameters.
./alter_neutron.x 880.2 1.0
returns:

Yp H2/H He3/H Li7/H Li6/H Be7/H
value: 2.483e-01 2.441e-05 1.032e-05 5.471e-10 1.081e-14 5.183e-10
+/- : 3.185e-04 6.798e-07 1.816e-07 3.902e-11 1.079e-14 3.860e-11

Compatible with BBN constraints (chi2 without correlations)
Compatible with BBN constraints (chi2 including correlations)

6 Example of results

To illustrate the capabilities of AlterBBN, we investigate the BBN constraints on the
dark density and reheating scenarios, described in Sections 2.2.1 and 5.4, respectively.

Figure 1. Yp in the dark density scenario (left) and [2H]/[H] in the reheating scenario
(right). The parameter regions compatible with the BBN constraints are for the dark
density scenario (left) in between the two left lines and below the curve on the right, and
for the reheating scenario (right) in between the two curves. The color corresponds to the
values of Yp and [2H]/[H].
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For the first case, we can constrain the value of the the dark density at T = 1 MeV and
its exponent, and for the second case, we can constrain the value of the radiation
injection at T = 1 MeV and its exponent. We used failsafe=3 for an improved
precision. The results are shown in Fig. 1. The color scale shows the value of Yp in
the dark density scenario, and of [2H]/[H] in the reheating scenario. The black lines
are the limits obtained using the constraints described in Appendix D.

27



A Nuclear reaction network

Table 1. Table summarizing the conventions used to denote the nuclei. Mass excess is
given in MeV.

index nuclei atomic number charge number mass excess
1 n 1 0 8.071388
2 p 1 1 7.289028
3 2H 2 1 13.135825
4 3H 3 1 14.949915
5 3He 3 2 14.931325
6 4He 4 2 2.424931
7 6Li 6 3 14.0864
8 7Li 7 3 14.9078
9 7Be 7 4 15.7696
10 8Li 8 3 20.9464
11 8B 8 5 22.9212
12 9Be 9 4 11.34758
13 10B 10 5 12.05086
14 11B 11 5 8.6680
15 11C 11 6 10.6506
16 12B 12 5 13.3690
17 12C 12 6 0
18 12N 12 7 17.3382
19 13C 13 6 3.125036
20 13N 13 7 5.3455
21 14C 14 6 3.019916
22 14N 14 7 2.863440
23 14O 14 8 8.006521
24 15N 15 7 0.101439
25 15O 15 8 2.8554
26 16O 16 8 −4.737036
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B Description of the integration methods

The integration method can be modified using the failsafe parameter of the relicparam
structure.

B.1 Linearization

The abundance evolution of any nuclei i is given by the Boltzmann equation

dYi
dt

= Ni

∑
j,k,l,m,n

−Y Ni
i Y

Nj
j Y Nk

k

Ni!Nj!Nk!
Γijk→lmn + Y Nl

l Y Nm
m Y Nn

n

Nl!Nm!Nn! Γlmn→ijk

 . (B.1)

Unfortunately, the system for all the nuclei is composed of highly non-linear equa-
tions, and requires special attention. The system of equations has to be linearized,
and written in the form

dỸ
dt

= M(Yi)Ỹ , (B.2)

where Ỹ = (Y1, · · · ,Yn) and M is a matrix depending on the Yi. The matrix
elements can be obtained with a comparison to
dYi

dt
= Ni

∑
j,k,l,m,n

[
− 1
Ni!Nj!Nk!(Ni +Nj +Nk)

Γijk→lmn (B.3)

×
[
NiY

Ni−1
i Y

Nj
j Y Nk

k Yi +NjY
Ni
i Y

Nj−1
j Y Nk

k Yj +NkY
Ni
i Y

Nj
j Y Nk−1

k Yk
]

+ 1
Nl!Nm!Nn!(Nl +Nm +Nn)Γlmn→ijk

×
[
NlY

Nl−1
l Y Nm

m Y Nn
n Yl +NmY

Nl
l Y Nm−1

m Y Nn
n Ym +NnY

Nl
l Y Nm

m Y Nn−1
n Yn

]]
.

B.2 Stiff equation integration

In a discrete integration, Eq. (B.2) becomes
Ỹn+1 − Ỹn

∆t = M(Yn)Ỹn , (B.4)

where n denotes the integration step number and ∆t the step-size. This equation
can be rewritten as

Ỹn+1 = [1 +M(Yn) ∆t] Ỹn . (B.5)
Unfortunately, M has negative eigenvalues, and there is a high risk during the inte-
gration that the (1 +M ∆t) cancels. For this reason, we instead integrate using

Ỹn+1 = [1−M(Yn) ∆t]−1 Ỹn , (B.6)

which is well-behaved and leads to a better convergence even for sufficiently large
values of ∆t. The linearization is therefore applied to the matrix [1−M(Yn) ∆t]. To
obtain the values of the derivatives of Yi, Ỹn+1 is obtain via a triangularization of the
matrix with a Cholesky decomposition, and inversion with a Gaussian elimination
and back substitution. The derivatives of the abundances are finally given by (Ỹn+1−
Ỹn)/∆t.
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B.3 Runge-Kutta of order 2

Methods 0–3 use a Runge-Kutta of order 2 integration,

Ỹn+1 = Ỹn + dỸ
dt

∆t , (B.7)

where
dỸ
dt

= 1
2

[
dỸ
dt

(tn) + dỸ
dt

(tn + ∆t)
]
. (B.8)

Following [2], the step-size is adapted with

∆t = min
(∣∣∣∣∣ T

dT/dt

∣∣∣∣∣ ct,
∣∣∣∣∣ Yi
dYi/dt

[
1 +

(
log(Yi)

log(Ymin)

)]∣∣∣∣∣ cy
)
, (B.9)

if ∆t > ∆tmin, where Ymin = 10−30, and ct, cy and ∆tmin are given in:

Method (failsafe) ct cy ∆tmin(s)
0 (fastest) 0.1 0.5 10−2

1 (default) 0.01 0.25 10−10

2 0.005 0.1 10−10

3 (slowest) 0.001 0.05 10−10

These methods are the fastest ones, but lack a more robust convergence test in
scenarios very far from the standard one, for which the other methods are preferred.

B.4 Runge-Kutta of order 2 with half step test

Methods 5–7 use Runge-Kutta integration of order 2, but the convergence test is
different. For each step, the variable are computed twice, once with a step of size
∆t, and the second with two step sizes ∆t/2. If the variable values differ by more
than a tolerance prec, the step-size is divided by 2 and the calculations start over.
Otherwise, the step-size is obtained by

∆t→ 1.8×min[1,max(0.3, minprec)]×∆t , (B.10)

where
minprec = min

(∣∣∣∣∣ prec × variable (2 steps)
variable (2 steps)− variable (1 step)

∣∣∣∣∣
)
, (B.11)

where only the abundances larger than Ymin are considered in the test, in addition
to the other physical variables.

For the different methods, the values of Ymin and the tolerances are given in:

Method (failsafe) Ymin Tolerance prec
5 (fastest) 10−25 5%

6 (recommended) 10−30 1%
7 (slowest) 10−30 0.1%
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B.5 Runge-Kutta of order 4 with half step test

For one time step, the standard Runge-Kutta of order 4 corresponds to

yn+1 = yn + ∆t
6 (k1 + 2k2 + 2k3 + k4) , (B.12)

where

k1 = dy

dt
(tn, yn) , (B.13)

k2 = dy

dt

(
tn + ∆t

2 , yn + ∆t
2 , k1

)
(B.14)

k3 = dy

dt

(
tn + ∆t

2 , yn + ∆t
2 , k2

)
(B.15)

k4 = dy

dt
(tn + ∆t, yn + ∆t k1) . (B.16)

The step-size is then adapted similarly to the method of Section B.4. For the different
methods, the values and tolerances of Ymin are:

Method (failsafe) Ymin Tolerance
10 (fastest) 10−25 5%

11 (recommended) 10−30 1%
12 (slowest) 10−30 0.1%

B.6 Runge-Kutta of order 4–5

For one time step, ∆t, the explicit Runge-Kutta methods correspond to

yn+1 = yn + ∆t
s∑
i=1

biki , (B.17)

where s is the number of sub-steps and

k1 = dy

dt
(tn, yn) , (B.18)

k2 = dy

dt
(tn + c2∆t, yn + ∆t(a21k1)) ,

k3 = dy

dt
(tn + c3∆t, yn + ∆t(a31k1 + a32k2)) , (B.19)

...
ks = dy

dt
(tn + cs∆t, yn + ∆t(as1k1 + as2k2 + · · ·+ as,s−1ks−1)) .

The methods of order 4–5 consist of evaluating yn+1 using simultaneously 4 and 5
sub-steps with common ci and aij, and use the two results to estimate the numerical
error and adapt the step-size.
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In AlterBBN, if the difference is smaller than the tolerance prec, the step-size is
adjusted to

∆t→ min
(

1.1,max
(
2, 0.84 (prec× minprec)1/4

))
∆t , (B.20)

otherwise,

∆t→ max
(

0.9,min
(
0.5, 0.84 (prec× minprec)1/4

))
∆t , (B.21)

with
minprec = min

(∣∣∣∣∣ prec × variable (2 steps)
variable (2 steps)− variable (1 step)

∣∣∣∣∣
)
, (B.22)

where only the abundances larger than Ymin are considered in the test, in addition
to the other physical variables.

B.6.1 Fehlberg-Runge-Kutta method

The parameters ci for this method are:

i 1 2 3 4 5
ci 1/4 3/8 12/13 1 1/2

The aij are:

aij 1 2 3 4 5
1 1/4
2 3/32 9/32
3 1932/2197 -7200/2197 7296/2197
4 439/216 -8 3680/513 -845/4104
5 -8/27 2 -3544/2565 1859/4104 -11/40

The order 4 solution is computed with:

i 1 2 3 4 5
bi 25/216 0 1408/2565 2197/4104 -1/5

and the order 5 with:

i 1 2 3 4 5 6
bi 16/135 0 6656/12825 28561/56430 -9/50 2/55

The other AlterBBN parameters are, depending on failsafe:

Method (failsafe) Ymin Tolerance
20 (fastest) 10−25 5%

21 (recommended) 10−30 1%
22 (slowest) 10−30 0.1%
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B.6.2 Cash-Karp-Runge-Kutta method

The parameters ci for this method are:

i 1 2 3 4 5
ci 1/5 3/10 3/5 1 7/8

The aij are:

aij 1 2 3 4 5
1 1/5
2 3/40 9/40
3 3/10 -9/10 6/5
4 -11/54 5/2 -70/27 35/27
5 1631/55296 175/512 575/13824 44275/110592 253/4096

The order 4 solution is computed with:

i 1 2 3 4 5 6
bi 2825/27648 0 18575/48384 13525/55296 277/14336 1/4

and the order 5 with:

i 1 2 3 4 5 6
bi 37/378 0 250/621 125/594 0 512/1771

The other AlterBBN parameters are, depending on failsafe:

Method (failsafe) Ymin Tolerance
30 (fastest) 10−25 10−2

31 (recommended) 10−30 10−4

32 (slowest) 10−30 10−5

C Comparison of the integration methods

In this section, we compare the different integration methods. The Runge-Kutta 4
method with failsafe = 12 is by construction the most precise (and slowest), to
which the results will be compared.

In the standard cosmological model, we compare the precision of one single BBN
calculation:
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failsafe Yp(×10−1) deviation 2H/H(×10−5) deviation 7Li/H(×10−10) deviation
0 2.462 −0.010 2.343 −0.120 5.680 +0.310
1 2.472 0.000 2.431 −0.032 5.473 +0.103
2 2.472 0.000 2.454 −0.009 5.402 +0.032
3 2.472 0.000 2.459 −0.004 5.382 +0.012
5 2.524 +0.048 2.672 +0.209 4.974 −0.396
6 2.475 +0.003 2.483 +0.020 5.316 −0.054
7 2.472 0.000 2.462 −0.001 5.372 +0.002
10 2.510 +0.038 2.787 +0.314 4.654 −0.716
11 2.476 +0.004 2.488 +0.025 5.304 −0.066
12 2.472 — 2.463 — 5.370 —
20 2.488 +0.016 2.606 +0.143 4.988 −0.382
21 2.479 +0.007 2.521 +0.058 5.212 −0.158
22 2.473 +0.001 2.467 +0.004 5.361 −0.009
30 2.489 +0.017 2.619 +0.146 4.969 −0.401
31 2.477 +0.005 2.488 +0.025 5.311 −0.059
32 2.473 +0.001 2.470 +0.007 5.351 −0.019

The deviations refer to the differences between the values obtained with failsafe =
12. For comparison, the values and theoretical uncertainties calculated with failsafe =
12 are:

Yp = (2.472± 0.003)× 10−1 , (C.1)
2H/H = (2.463± 0.038)× 10−5 , (C.2)
7Li/H = (5.370± 0.352)× 10−10 . (C.3)

The computation times with different compilers (with OpenMP activated unless
specified otherwise) on an Intel Core i7-6700HQ with 4 cores at 2.60GHz are for one
BBN calculation:
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failsafe gcc 8.3 clang 7.0 icc 19.0 gcc w/o OpenMP
0 0.0292439 s 0.0371051 s 0.035774 s 0.030885 s
1 0.0598671 s 0.0702951 s 0.04901 s 0.0663319 s
2 0.12691 s 0.14824 s 0.105646 s 0.139108 s
3 0.513578 s 0.595697 s 0.426564 s 0.561526 s
5 0.241128 s 0.279304 s 0.201433 s 0.260442 s
6 1.83213 s 2.23646 s 1.5879 s 1.97117 s
7 16.9573 s 20.3785 s 14.0737 s 17.8445 s
10 0.843263 s 0.992097 s 0.688307 s 0.89699 s
11 7.81774 s 9.06975 s 6.40297 s 8.35519 s
12 72.1262 s 84.8538 s 59.8514 s 77.7767 s
20 0.157761 s 0.176582 s 0.133258 s 0.169685 s
21 0.54873 s 0.625423 s 0.449118 s 0.597708 s
22 4.84355 s 5.62732 s 4.11268 s 5.26304 s
30 0.200886 s 0.231516 s 0.170542 s 0.215176 s
31 1.53365 s 1.79631 s 1.29438 s 1.68841 s
32 5.85279 s 6.8085 s 4.89614 s 6.41176 s

For a single BBN calculation, OpenMP does not decrease the computation time. How-
ever OpenMP decreases the computation times if REACLIB is activated and the num-
ber of elements is larger.

The computation times of the correlation matrix are:

failsafe gcc 8.3 clang 7.0 icc 19.0 gcc w/o OpenMP
0 0.710522 s 0.945136 s 0.618748 s 2.5015 s
1 1.98385 s 2.63015 s 1.73446 s 7.17126 s
2 4.37474 s 6.00581 s 3.70563 s 14.8925 s
3 17.5996 s 22.5279 s 14.915 s 59.1254 s
5 8.0979 s 9.99622 s 6.89687 s 27.2925 s
6 64.6826 s 77.3424 s 51.4998 s 207.582 s
7 549.041 s 721.656 s 467.687 s 1886.54 s
10 27.4793 s 34.2517 s 24.0487 s 94.5529 s
11 256.467 s 321.405 s 218.789 s 882.831 s
12 2344.66 s 3094.74 s 2062.58 s 8312.86 s
20 4.97176 s 7.24952 s 4.54886 s 17.6842 s
21 17.3305 s 28.8574 s 15.2907 s 62.2697 s
22 151.593 s 224.326 s 135.464 s 550.91 s
30 6.28095 s 8.24639 s 5.8179 s 22.2994 s
31 48.7308 s 67.6528 s 44.2791 s 176.329 s
32 188.842 s 258.642 s 175.523 s 671.334 s
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D BBN constraints

The function bbn_excluded contains a recent set of uncorrelated observational mea-
surements [28],

Yp = 0.2450± 0.003 ,
[2H]/[H] = (2.569± 0.027)× 10−5 , (D.1)

[3He]/[2H] = (1.1± 0.2)× 10−5 ,

[7Li]/[H] = (1.6± 0.3)× 10−10 .

To assess the validity of the calculated abundances, a χ2 is computed using

χ2 =
∑
i

(Oi − Ei)C−1
ij (Oj − Ej) , (D.2)

where i corresponds to the abundances used to set the constraints, Oi to the calcu-
lated abundance, Ei to the observational measurement and C−1

ij to the inverse of the
sum of the theoretical and experimental covariance matrices.

The number of degrees of freedom is considered to be the number of observational
constraints, which can be set into constraints, and the exclusion is assessed at 95%
C.L. If err is smaller than 3, the correlations are ignored, otherwise the covariance
matrix is computed.

By default, only the two constraints on Yp and [2H]/[H] are used to compute the
χ2.

The user is invited to change the constraints with up-to-date values in the routine
bbn_excluded, which can be found in src/bbn_constraints.c.
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Table 2. Table summarizing the conventions used to denote the nuclear reactions. Reverse
reaction rates are detailed balance factors. Energy release is given in K.

reaction index reaction reverse reaction rate energy release
0 n decay 0 0
1 n → p 0 0
2 3H → e− + νe + 3He 0 0
3 8Li → e− + νe + 24He 0 0
4 12B → e− + νe + 12C 0 0
5 14C → e− + νe + 14N 0 0
6 8B → e+ + νe + 24He 0 0
7 11C → e+ + νe + 11B 0 0
8 12N → e+ + νe + 12C 0 0
9 13N → e+ + νe + 13C 0 0
10 14O → e+ + νe + 14N 0 0
11 15O → e+ + νe + 15N 0 0
12 H + n → + 2H 0.477 25.815
13 2H + n → γ + 3H 1.65 72.612
14 3He + n → γ + 4He 2.63 238.794
15 6Li + n → γ + 7Li 1.20 84.132
16 3He + n → p + 3H 1.001 8.863
17 7Be + n → p + 7Li 1.001 19.080
18 6Li + n → α + 3H 1.068 55.503
19 7Be + n → α + 4He 4.68 220.382
20 2H + p → γ + 3He 1.65 63.749
21 3H + p → γ + 4He 2.63 229.931
22 6Li + p → γ + 7Be 1.20 65.053
23 6Li + p → α + 3He 1.067 46.640
24 7Li + p → α + 4He 4.68 201.302
25 2H + α → γ + 6Li 1.55 17.109
26 3H + α → γ + 7Li 1.13 28.629
27 3He + α → γ + 7Be 1.13 18.412
28 2H + d → n + 3He 1.73 37.934
29 2H + d → p + 3H 1.73 46.798
30 3H + d → n + 4He 5.51 204.116
31 3He + d → p + 4He 5.51 212.979
32 3He + 3He → 2p + 4He 3.35 149.229
33 7Li + d → n + α + 4He 9.81 175.487
34 7Be + d → p + α + 4He 9.83 194.566
35 3He + 3H → γ + 6Li 2.47 183.290
36 6Li + d → n + 7Be 2.52 39.237
37 6Li + d → p + 7Li 2.52 58.317
38 3He + 3H → d + 4He 1.59 166.181
39 3H + 3H → 2n + 4He 3.34 131.503
40 3He + 3H → n + p + 4He 3.34 140.366
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Table 3. Second part of table 2.
reaction index reaction reverse reaction rate energy release

41 7Li + 3H → n + 9Be 3.55 121.136
42 7Be + 3H → p + 9Be 3.55 140.215
43 7Li + 3He → p + 9Be 3.55 129.999
44 7Li + n → γ + 8Li 1.33 23.589
45 10B + n → γ + 11B 3.07 132.920
46 11B + n → γ + 12B 2.37 39.111
47 11C + n → p + 11B 1.001 32.086
48 10B + n → α + 7Li 0.755 32.371
49 7Be + p → γ + 8B 1.32 1.595
50 9Be + p → γ + 10B 0.986 76.424
51 10B + p → γ + 11C 3.07 100.834
52 11B + p → γ + 12C 7.10 185.173
53 11C + p → γ + 12N 2.37 6.979
54 12B + p → n + 12C 3.00 146.061
55 9Be + p → α + 6Li 0.618 24.663
56 10B + p → α + 7Be 0.754 13.291
57 12B + p → α + 9Be 0.291 79.903
58 6Li + α → γ + 10B 1.60 51.761
59 7Li + α → γ + 11B 4.07 100.549
60 7Be + α → γ + 11C 4.07 87.543
61 8B + α → p + 11C 3.07 85.948
62 8Li + α → n + 11B 3.07 76.960
63 9Be + α → n + 12C 10.28 66.158
64 9Be + d → n + 10B 2.06 50.609
65 10B + d → p + 11B 6.42 107.105
66 11B + d → n + 12C 14.85 159.357
67 4He + α + n → γ + 9Be 0.600 18.262
68 4He + 2a → γ + 12C 2.06 84.420
69 8Li + p → n + α + 4He 3.54 177.713
70 8B + n → p + α + 4He 3.55 218.787
71 9Be + p → d + α + 4He 0.796 7.554
72 11B + p → 2a + 4He 3.45 100.753
73 11C + n → 2a + 4He 3.46 132.838
74 12C + n → γ + 13C 0.898 57.400
75 13C + n → γ + 14C 3.62 94.884
76 14N + n → γ + 15N 2.74 125.715
77 13N + n → p + 13C 1.001 34.846
78 14N + n → p + 14C 3.00 7.263
79 15O + n → p + 15N 1.001 41.037
80 15O + n → α + 12C 0.707 98.659
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Table 4. Third part of table 2.
reaction index reaction reverse reaction rate energy release

81 12C + p → γ + 13N 0.896 22.554
82 13C + p → γ + 14N 1.21 87.621
83 14C + p → γ + 15N 0.912 118.452
84 13N + p → γ + 14O 3.62 53.705
85 14N + p → γ + 15O 2.73 84.678
86 15N + p → γ + 16O 3.67 140.733
87 15N + p → α + 12C 0.706 57.622
88 12C + α → γ + 16O 5.20 83.111
89 10B + α → p + 13C 9.35 47.134
90 11B + α → p + 14C 11.03 9.098
91 11C + α → p + 14N 3.68 33.921
92 12N + α → p + 15O 4.25 111.620
93 13N + α → p + 16O 5.80 60.557
94 10B + α → n + 13N 9.34 12.288
95 11B + α → n + 14N 3.67 1.835
96 12B + α → n + 15N 4.25 88.439
97 13C + α → n + 16O 5.79 25.711
98 11B + d → p + 12B 4.96 13.296
99 12C + d → p + 13C 1.88 31.585
100 13C + d → p + 14C 7.58 69.069
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